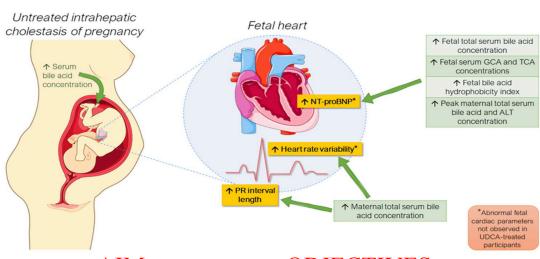


Poster Number: EP: 411 Name: Dr. DEEPAK SINGH JADAUN


Title: ROLE OF MATERNAL BILE ACID ON MATERNAL & PERINATAL OUTCOME IN INTRAHEPATIC CHOLESTASIS IN PREGNANCY

INTRODUCTION

ICP is associated with increased risk of sudden stillbirth. Fetal complications like preterm, RDS, MSL, stillbirth, NICU admission & neonatal morbidity are seen. It mainly affects patients in second and third trimester. Most commonly used methods of antenatal fetal surveillance like NST/CTG or USG cannot prevent or predict stillbirth in ICP.

AIM

To study maternal bile acid levels in Intrahepatic Cholestasis of Pregnancy (ICP).
 To study the maternal & fetal outcomes in ICP.

OBJECTIVES

- To study the incidence of ICP
 To evaluate maternal bile acid levels.
- 3. To asses the correlation of ALP, liver transaminase enzymes with total bile acids in ICP

METHODOLOGY

Place of Study: Department of Obstetrics and Gynaecology, Heritage Institute of Medical Sciences, Uttar Pradesh Study design: Prospective observational study Study Period: July 2023 - Jan 2025, Sample Size: 71

THE INCLUSION CRITERIA

- 1. Pruritus without primary skin lesion
- 2. Diagnosed ICP (unexplained pruritis with Bile acid >10 micromol/ L)

EXCLUSION CRITERIA:

- 1. Acute fatty liver of pregnancy(AFLP)
- 2. Dermatological diseases with itching

RESULTS

Lab parameter	Baseline	After 4 weeks therapy				
	Group I(ICP) N = 71	Group IIPregnant controls $N = 50$	p value	Group III Non- pregnant controlsN = 35	Group HCPN = 71	% Reduction
SB (mg/dl)Mean ± SDRange	0.94 ± 0.79(0.2– 5.2)	$0.6 \pm 0.08 (0.2 - 0.8)$	0.067	_	0.66 ± .04	29.7%
AST (U/L)Mean ± SDRange	173.38 ± 139(17– 566)	$28.9 \pm 8.2 (17 - 40)$	0.001	_	76.8 ± 63.6 (20– 311)	55.8%
ALT (U/L)Mean ± SDRange	$177.7 \pm 151.7(11 - 521)$	$27.1 \pm 6.8(18 - 39)$	0.001	_	$73.58 \pm 62.5 (15 - 253)$	58.8%
ALP (U/L)Mean ± SDRange	$475.85 \pm 208 (90 - 1143)$	103.3 ± 58.4 (38–234)	0.001	_	$252.7 \pm 210 (48 - 1025)$	50.4%
Serum BA (µmol/L)Mean ± SDRange	75.9 ± 39.5 $(23-213)$	29.2 + 5.7(18.9–35.6)	0.001	$5.9 \pm 1.8 (4.8 - 7.2)$	41.26 ± 15.4(23– 108	45.6%

Rate of pooled risk of fetal bradycardia and meconium stained liquor (MSL) in different ranges of biochemical parameters; and proposed Nutan scoring for ICP

Parameter	Range	Range-wise distribution of patients(n = 71)	Occurrence of MSL/fetal bradycardia(Range- wise details of 23* patients)n (%)	P value	Proposed ICP Scoring	Documenta
Bile acids(BA) (In μmol/L)	< 40	8	1/8 (12.5%)		0	BA_0
	40- < 80	32	7/32 (21.8%)	p = 0.008	1	BA_1
	80- < 120	21	7/21 (33.3%)		2	BA_2
	120- < 200	8	6/8 (75%)		3	BA_3
	≥ 200	2	2/2 (100)		4	BA_4
Aminotransferase (AT) (In IU/mL)	< 100	31	5/31 (16.1)%	p = 0.016	0	AT_0
	100- < 200	17	5/17 (29.4%)		1	AT_1
	200- < 400	15	7/15 (46.6)%		2	AT_2
	400- < 500	7	5/7 (71.4)		3	AT ₃
	≥ 500	1	1/1 (100%)		4	AT_4
Serum bilirubin** (SB)	< 0.8	29	2/29 (6.8%)	p = 0.001	0	SB_0

REFRENCES

1. Geenes V, Williamson C. Intrahepatic cholestasis of pregnancy. World J Gastroenterol. 2009;15:2049–2066. doi: 10.3748/wjg.15.2049. [PMC free article] [PubMed] [Crosss